Hierarchical Multiple Kernel Clustering
نویسندگان
چکیده
Current multiple kernel clustering algorithms compute a partition with the consensus or graph learned from pre-specified ones, while emerging late fusion methods firstly construct partitions each separately, and then obtain one them. However, both of them directly distill information kernels graphs to matrices, where sudden dimension drop would result in loss advantageous details for clustering. In this paper, we provide brief insight aforementioned issue propose hierarchical approach perform preserving maximumly. Specifically, gradually group samples into fewer clusters, together generating sequence intermediary matrices descending sizes. The is simultaneously conversely guides construction matrices. Nevertheless, cyclic process modeled an unified objective alternative algorithm designed solve it. addition, proposed method validated compared other representative on benchmark datasets, demonstrating state-of-the-art performance by large margin.
منابع مشابه
Multiple Kernel Clustering
Maximum margin clustering (MMC) has recently attracted considerable interests in both the data mining and machine learning communities. It first projects data samples to a kernel-induced feature space and then performs clustering by finding the maximum margin hyperplane over all possible cluster labelings. As in other kernel methods, choosing a suitable kernel function is imperative to the succ...
متن کاملRatio-Based Multiple Kernel Clustering
Maximum margin clustering (MMC) approaches extend the large margin principle of SVM to unsupervised learning with considerable success. In this work, we utilize the ratio between the margin and the intra-cluster variance, to explicitly consider both the separation and the compactness of the clusters in the objective. Moreover, we employ multiple kernel learning (MKL) to jointly learn the kernel...
متن کاملMultiple Kernel Learning with Hierarchical Feature Representations
In this paper, we suggest multiple kernel learning with hierarchical feature representations. Recently, deep learning represents excellent performance to extract hierarchical feature representations in unsupervised manner. However, since fine-tuning step of deep learning only considers global level of features for classification problems, it makes each layers hierarchical features intractable. ...
متن کاملMultiple Kernel Clustering with Local Kernel Alignment Maximization
Kernel alignment has recently been employed for multiple kernel clustering (MKC). However, we find that most of existing works implement this alignment in a global manner, which: i) indiscriminately forces all sample pairs to be equally aligned with the same ideal similarity; and ii) is inconsistent with a well-established concept that the similarity evaluated for two farther samples in a high ...
متن کاملMultiple Kernel Clustering Framework with Improved Kernels
Multiple kernel clustering (MKC) algorithms have been successfully applied into various applications. However, these successes are largely dependent on the quality of pre-defined base kernels, which cannot be guaranteed in practical applications. This may adversely affect the clustering performance. To address this issue, we propose a simple while effective framework to adaptively improve the q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i10.17051